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Figure 1. For the first time, LazyStrike provides a unified framework for the systematic analysis and effective mitigation of diverse image
artifacts across various supervision settings for vision transformer. For each method, we show the patch score (middle: full supervision;
right: self-supervision) and PCA visualization (left: full supervision). Patch score is the similarity between CLS token and patch features.

Abstract

Vision Transformer, pre-trained on large-scale datasets, pro-
vides general-purpose feature representations for a broad
range of downstream tasks. However, artifacts in ViTs
are widely observed across different supervision and down-
stream tasks. Through systematic analysis of artifacts in
ViTs, we find that existing approaches have not sufficiently
elucidated the fundamental mechanisms underlying these ar-
tifacts. In this paper, we reveal their origin in lazy behavior
of ViT where semantically irrelevant local patches act as
shortcuts to represent global image semantics, influenced
by the global dependencies of attention and the sparsity of
annotations. Our solution—discarding more than half of the
image patches to strike out ViT’s lazy tendency—eliminates
artifacts and mitigates associated distortion, delivering con-
sistent performance improvements across 12 benchmarks
under label, text, or self-supervision. We hope our work
offers a new perspective on ViT’s behavior. All the code and
weights will be made publicly available.

1. Introduction
“A problem well-stated is a problem half-solved.”

– Charles Kettering

Vision transformer [7] (ViT) has become the de-facto stan-

dard for image recognition [6]. More importantly, it serves
as a general-purpose feature extractor across various spe-
cific vision tasks [4, 11], functioning as a frozen foundation
model pre-trained on large-scale data to embed images into
feature representations, enabled by its scalability in data and
model size. More broadly, this generic ViT feature extractor
can adapt to various supervision methods during pre-training,
with different approaches exhibiting characteristics particu-
larly suited to diverse downstream tasks. Specifically, super-
vised methods—such as training ViTs with fully-supervised
classification labels or weakly-supervised image-text pairs
(e.g., in models like CLIP [22])—produce dense features for
open-vocabulary tasks, and function as visual encoders for
large vision-language models (LVLMs) [17]. Alternatively,
self-supervised methods [1, 3, 20], particularly the DINO [1]
model trained solely on images, demonstrate the potential
for object and part discovery, making them applicable to
unsupervised segmentation tasks [24].

However, recent studies uncover perplexing phenomenas
in ViTs when applied to downstream tasks requiring dense
features. For instance, DINO [35] demonstrates that label-
supervised ViTs suffer from an attention deficit [21], while
CLIPSelf [30] observes that text-supervised ViTs fail to pro-
duce dense image features that are accurately aligned with
textual cues in open-vocabulary tasks. Meanwhile, Regis-
ter [5] reveals that self-supervised ViTs generate artifacts
in the attention maps, commonly referred to as high-norm



tokens, which adversely affect object localization tasks [24].
Intuitively, shouldn’t these phenomena reflect a common

underlying issue in ViTs, merely manifesting differently
under various supervision paradigms [1, 12, 26] ? But, un-
fortunately, previous methods have focused on addressing
the issues that manifest (even developing distinct solution
approaches for different downstream tasks), yet the funda-
mental origination mechanisms remain underexplored in
prior research. Therefore, in our preliminary exploration,
we found that no single method [5, 29, 36] could compre-
hensively address those perplexing phenomena. This result
suggests that our understanding of ViT remains incomplete,
despite its existence [7] for half a decade. Given that all
issues stem from a singular underlying cause, there must
exist a unified solution. In this paper, we undertake an
investigation rooted in first principles thinking, system-
atically defining, analyzing, and ultimately resolving the
problem of different types of artifacts observed in Vision
Transformers, from their most fundamental elements.

To establish a unified definition for those perplexing phe-
nomena in ViT across different paradigms, we introduce the
Patch Score—a metric that quantifies the similarity between
patch features and the CLS token, which encapsulates an
image’s global semantics—thereby assessing local semantic
consistency relative to the global representation, independent
of the training paradigm. The intuition behind patch score is
that for ViT under different supervision, the training objec-
tive aims to align the CLS feature with supervisory signals
(e.g., labels or text), any misalignment in dense features or
high-norm token results in increased patch scores in non-
foreground regions, as shown in Fig. 1. To quantitatively
assess artifacts in patch scores, we propose the Point-in-Box
benchmark, which evaluates whether the patch with the
highest score is located within the annotated object bound-
ing boxes. As shown in Fig. 1 and Tab. 1, we find that
across different supervision settings, ViTs exhibit disordered
patch scores and much lower point-in-box score compared
with ConvNet [10]. For clarity and simplicity, unless ex-
plicitly stated otherwise, the term “artifact” in the following
text specifically refers to semantically irrelevant background
tokens that erroneously yield high patch scores.

Based on patch score and point-in-box score, we conduct
an in-depth analysis into ViT’s behavior, we propose a new
hypothesis aimed at better explaining the artifacts in ViTs:

• The sparsity of annotations results in redundant, semanti-
cally irrelevant image patches. For example, we find that
masking the top 50% highest-scoring patches in a pre-
trained ViT does not harm image recognition performance
on ImageNet (Fig. 2).

• ViT’s global dependencies allow it to exploit redundant
local patches as shortcuts to represent global semantics. In
the absence of patch-level annotations, models may adopt
a “lazy behavior” by diffusing small foreground semantics

Method High Norm Point-in-Box (%)

ResNet [10] ✗ 68.4
ViT [7] ✓ 42.7

+Register [5] ✗ 41.5

DINO-ResNet [1] ✗ 71.1
DINO-ViT [1] ✗ 45.3

OpenCLIP-ResNet‡ [22] ✗ 53.9
OpenCLIP-ViT [22] ✓ 39.8

+Register [5] ✗ 37.6

Table 1. Point-in-Box score across different supervision methods.
We find that Register indeed effectively avoids high-norm phe-
nomena but high-norm token is not the root cause of artifacts. ‡:
CLIP-ResNet adopts attention-pool.

to background at the beginning of the training (Fig. 3). We
validate that reducing ViT’s global dependencies indeed
mitigates artifact phenomena (Tab. 2).

Building on this interpretation, we further validate our hy-
pothesis by proposing a straightforward solution to eliminate
these artifacts: By discarding certain background patches
during pre-training, we enforce ViTs to lock foreground se-
mantics. Specifically, we enable the model to learn to identify
redundant tokens (Sec. 5.2) and to drop redundant patches
at varying ratios during aggregation. As shown in Fig. 5,
ViTs automatically shift their attention to foreground objects,
aligning high-scoring patches with the foreground as these
ratios are appropriately increased. After the Lazy behavior
is Struck away, our approach, termed LaSt-ViT, eliminates
artifacts in our patch scores across all supervision methods,
effectively addressing both high-norm issues and feature
misalignment. More importantly, for the first time, ViTs
exhibit emergent properties [35] across different supervi-
sion settings.

In summary, our main contributions are as follows:

• We systematically analyze the root cause of different types
of artifacts in ViTs, namely lazy behavior, providing a
unified metric and a comprehensive, in-depth explanation.

• We propose a simple yet effective solution, drop more than
half of the image patches, which eliminates artifacts for
both supervised and self-supervised ViT.

• We show that the emergent properties of ViTs across differ-
ent supervision settings can be achieved by LaSt-ViT and
explained by our hypothesis, providing a new perspective
on ViT behavior.

• By solely eliminating artifacts, LaSt-ViT enables the use
of pre-trained ViTs as feature extractors while still achiev-
ing consistent and significant improvements across 12
downstream benchmarks—including object discovery, se-
mantic/instance segmentation, and open-vocabulary object
detection.



2. Related Work
Artifacts in text-supervised ViT (CLIP-type model [22]).
Recent years have witnessed rapid advancements in vision-
language contrastive pretraining [15, 22]. Surprisingly, be-
yond image-level classification, MaskCLIP [36] first find
that CLIP model can extract free dense labels (zero-shot
semantic segmentation) from the dense alignment in the last
layer feature map and the text feature. However, subsequent
studies [9, 14, 16, 29, 30, 34] have revealed that while ViT
outperforms ResNet in terms of model size and classification
performance, it significantly lags behind ResNet in dense
alignment tasks. To address the misalignment issue, existing
works can be categorized into two approaches: modifying
the network architecture and introducing additional align-
ment training. For the former approach, mainstream meth-
ods [9, 14, 16, 29, 31, 34] primarily focus on modifying the
final attention layer. For the latter approach, CLIPSelf [30]
improves performance on open-vocabulary dense prediction
tasks by aligning region-level features with image-level fea-
tures. Different from previous methods in text-supervised
ViTs, which either modify the network structure—potentially
affecting its inherent performance—or require additional
post-training, our approach addresses this issue directly from
the pretraining perspective, which fundamentally avoids the
network’s lazy behavior.
Artifacts in self-supervised ViT. (DINO-type model [1]).
Register [5] found that DINOv2 [20] leads to successful
monocular depth estimation and semantic segmentation, but
it loses the object detection capability of DINO [1] due to
artifacts appearing on the feature map. To address this issue,
additional tokens were introduced, designed to store global
features and mitigate the impact of these artifacts. During our
in-depth analysis of the high-norm phenomenon, we found
that high-norm is merely a manifestation of the lazy behavior
in later stages. Simply moving the high-norm tokens from
the feature map to the register tokens does not fully address
the underlying deficiencies in downstream tasks. Therefore,
Vision Transformer requires more than just Registers.

3. Preliminary
3.1. Network Architecture: Vision Transformer
Vision Transformer [7] (ViT), a unified backbone for var-
ious vision tasks, employs a transformer-like [28] archi-
tecture over patches of the image. It first splits an image
x ∈ RH×W×3 into non-overlapping patches and embed
these patches as patch embeddings xemb ∈ RH

C ×W
C ×N (C

stands for the downsample ratio and N denotes hidden di-
mension) using a patch embedding module Pemb(·), treat-
ing each patch as a token. After patchfy, several stacked
transformer encoder layers Penc(·) are applied on image to-
kens. Within the transformer layer, tokens are updated by
self-attention to capture meaningful local information. To

aggregate global features, an additional CLS token or global
average pooling is performed. The overall feature extraction
is computed as:

xpatch = Penc(Pemb(x)),QCLS = Pooling(xpatch), (1)
or

xpatch,QCLS = Penc(Pemb(x),OCLS), (2)

where Pooling denotes global average-pooling in Eq. (1), and
xpatch ∈ RH

C ×W
C ×N is final patch feature, OCLS in Eq. (2)

is a learnable query concatenated with patch embeddings to
derive the global CLS token QCLS.

4. Analysis and Hypothesis
We first propose a probing metric applicable to different pre-
training approaches in Sec 4.1, along with the Point-in-Box
benchmark, to provide a quantitative analysis of various pre-
training strategies and their evolution during training. Based
on the patch score, we first investigate from a spatial per-
spective which specific patches in a well-trained ViT yield
high scores, and from a temporal perspective how the dis-
tribution of patch scores evolves over the course of training
in Sec. 4.2. From the conclusions of Sec. 4.2, we hypoth-
esize that both the sparsity of annotations and ViT’s lazy
behavior are underlying causes of the artifacts observed in
the patch scores. Therefore, in Sec. 4.3 and Sec. 4.4, we
validate our findings by systematically isolating these two
factors. Notably, we present our investigation using fully
supervised [26] experiments on ImageNet [6], the most con-
trolled and extensively studied setting. Nevertheless, we
have observed the same trends across other datasets [2, 23]
and training settings [1, 12]. Due to space constraints, we
present several intriguing conclusions, including the rela-
tionship between high-norm tokens [5] and artifacts, as well
as why DINO-v1 [1] is an exception to the high-norm phe-
nomenon, in the appendix. We strongly encourage readers
to review it.

4.1. New Metric: Patch Score and Point-in-Box
Patch Score. To enable a unified exploration across different
pretraining settings, we propose a new metric: Patch Score.
Specifically, we employ the CLS features to compute the dot
product similarity for each patch as follows:

Sp = xpatch · QCLS, (3)

where patches with higher scores indicate stronger alignment
with image-level information (the CLS token).
Point-in-Box benchmark. Building on the patch score, we
assess artifacts by determining whether the highest scoring
regions correspond to foreground objects. We use images
from the ImageNet [6] validation set that feature a single
object annotation to avoid ambiguity. We define the Point-in-
Box score as the proportion of instances in which the highest
patch score falls within the foreground bounding box.



4.2. Artifacts in Patch Score

Q: We wonder, where dose CLS token “look” at?

Experiment Setting: Given a ViT-B/16 [7] fully supervised
on ImageNet [6] provided by Torchvision [19], we mask
the corresponding high-score or low-score patches on the
original input RGB image and then re-evaluate. We report
both the classification performance and the difference (∆).
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Figure 2. Masked Image classification on ImageNet. Although
masking high-score patches removes more than half of the image,
it surprisingly does not harm performance, whereas masking low-
score patches does. This suggests that high-score patches primarily
belong to the background and do not contribute to classification.

Experiment Results: As shown in Fig. 2, masking high-
score patches not only avoids performance degradation but
even improves it (+1.2% for ViT-B), with minimal loss even
when over half the patches are masked. In contrast, masking
low-score patches causes a greater performance drop, with
the largest difference of 60% Acc observed at 70% masking.
Experiment Conclusion: Based on the experiment results:
• Patches with higher scores are more often located in

semantically irrelevant background regions, while fore-
ground patches tend to have lower scores.

• Commonly used datasets for pretraining ViTs are object-
centered, with a large portion of image patches being
redundant or irrelevant. As a result, masking half of the
image patches does not affect classification.

Q: We wonder, when does this phenomenon begin?

Experiment Setting: We train ViT-B/16 [7] and ResNet-
50 [10] on ImageNet using the same batch size, and report
both classification accuracy and Point-in-Box score over
training iterations.

Figure 3. Image classification and Point-in-Box score on
ImageNet-1k [6]. The left axis presents classification accuracy over
training step, while the right axis displays the Point-in-Box score.
ViT’s Point-in-Box score is significantly lower than ResNet’s from
the outset, and it shows no improvement as training progresses.

Experiment Results: As shown in Fig. 3, while classifi-
cation performance improves over training, the Point-in-
Box score for ViT remains nearly unchanged—rising only
slightly from 0.42 at 10% ACC@1 to 0.44 at 60% ACC@1.
ViT model exhibit significantly lower scores than ResNet.
Experiment Conclusion: This confirms that artifacts in
patch scores emerge during begining of training. It seems
that ViT has been “looking” at the background regions from
the very beginning. Given that irrelevant background regions
occupy more than 50% of the image, does this imply that the
most convenient—and laziest—learning strategy for the
model is to first diffuse the small foreground semantics
into the majority background patches and then aggregate
these background patch feature through the CLS token?
In the next two sections, we separately eliminate the effects
of annotation sparsity (Sec. 4.3) and the model’s ability to
diffuse semantics (Sec. 4.4) to verify our hypothesis.

4.3. The Sparsity of Annotations

Validation Experiment Setting: To validate our hypoth-
esis of annotation sparsity, we reduce annotation sparsity
by enlarging the kernel of Pemb(·)—thereby lowering the
proportion of background tokens even without ground truth.
We train ViT-base with a notably large 28×28 kernel on
ImageNet compared with default ViT-B/16.
Validation Experiment Results: As shown in Fig. 4, this
adjustment leads to a modest improvement in the Point-in-
Box score, increasing from 0.44 to 0.52. To better visualize
the improvement, we additionally provide patch score vi-
sualizations, showing that the highest-scoring patches shift
from the background to the foreground. However, the im-
provement is unstable and may degrade classification perfor-
mance, dropping from 62% to 55%. This also explains why
larger models suffer more [5], as ViT-B uses a 16×16 kernel,
whereas ViT-L typically employs a 14×14 kernel.
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Figure 4. Image classification and Point-in-Box score on
ImageNet-1k [6]. To better better understand the improvement,
we visulize the patch score at two training step. By increasing
the kernel size to boost the proportion of foreground patches, the
artifacts in patch scores are alleviated.

4.4. Lazy Behavior from ViT’s Global Dependencies

Validation Experiment Setting: To validate our hypothe-
sis of model’s ability, we progressively reduce the model’s
capacity for global representation by replacing the origi-
nal attention mechanism with a window-based one [18] at
each layer. We train ViT-Small [7] on ImageNet [6] for 50
epochs and report classification performance alongside the
Point-in-Box score, as well as the layers and window sizes.

Window Index Window Size IN1K Point-in-Box

None None 72.3 50.1
1,5,9,11 4 71.7 52.1

All 4 63.9 59.8

Table 2. Window attention experiment: By reducing the model’s
long-range capability, the artifacts are alleviated.

Validation Experiment Results: As shown in Tab. 2, We
observe that as the number of global attention layers in the
network decreases, the points-in-box score increase signifi-
cantly. Please note that the second row represents the default
window attention setting [18], which results in only a slight
improvement in the Point-in-Box score (+2%). The highest
score is achieved when all attention layers are replaced with
window-based attention. However, this comes at the cost
of reduced classification performance. After an in-depth
analysis, we propose a simple, straightforward, and unified
hypothesis to explain the peculiar mechanisms in ViT pre-
training:

Algorithm 1 LaSt-ViT Pytorch-type pseudo-code

1 h_dim = hidden_dim
2 M = number of patch we want to aggregate
3 class ViT(nn.Module):
4
5 def gauss_k(self, kernel_size, sigma):
6 # generate gaussian_kernel_1d
7 x = torch.arange(-kernel_size // 2 + 1,

kernel_size // 2 + 1)
8 kernel = torch.exp(-0.5 * (x / sigma) ** 2)
9 kernel = kernel / torch.max(kernel)

10 return kernel
11
12 def __call__(self, image):
13 # Patchify, Add position embeddings::
14 x = conv(image) + pe
15 # Encoder
16 x = TransformerEncoder(...)(x)
17 x_fft = torch.fft(x, dim=-1)
18 x_fft = x_fft * gauss_k(h_dim, h_dim ** 0.5)
19 x_ifft = torch.ifft(x, dim=-1).real
20 diff = torch.abs(x - x_ifft) / torch.abs(x)
21 _, indices = torch.topk(diff, k=M, dim=1)
22 sel_p = torch.gather(x, 1, indices)
23 return torch.mean(sel_p, dim=1)

Notes: Changes to existing code highlighted via violet background.

Takeaway: The sparsity of annotations, coupled with
ViT’s global dependencies, allows its lazy behavior to
diffuse class-related image semantics to all redundant,
semantically irrelevant background patches.

5. Method
5.1. Motivation
Based on these observations and hypotheses, we propose
a simple and general solution to prevent the lazy behavior
in ViT: Stop using the learnable CLS token to arbitrarily
aggregate global information within self-attention. Instead,
foreground semantics should be locked. When aggregating
the CLS token, we use the Fourier transform to discard redun-
dant tokens, ensuring that pooling is performed selectively
on meaningful patch features.
We want to highlight that: During our investigation, we
also identify alternative methods to mitigate lazy behavior,
such as max pooling. Once we understand how the problem
arises, we can devise a wide range of solutions—after all,
understanding the issue is already half the battle. In the
following sections, we present the approach that proved to
be the most robust with the best downstream performance,
and compare it with other simple alternatives.

5.2. LaSt-ViT
In LaSt-ViT, during the final pooling stage, we first trans-

form the patch features into the frequency domain and apply
a high-pass filter to remove low-frequency components. The
filtered features are then converted back to the original do-
main, where we measure their distance from the original
features. Patch features with small distances—indicating



Figure 5. Selection results on ImageNet validation images: For
each triple, we display the redundant tokens identified by LaSt-ViT,
with varying numbers of selected tokens.

minimal information loss—are selected and aggregated into
the CLS token. Specifically, the distance computation can
be formulated as:

xFFT = FFT(xemb), (6)
xFFT = xFFT ∗ Gaussian_kernel, (7)
ixemb = IFFT(xFFT), (8)

D =
xemb

abs(ixemb − xemb)
, (9)

where FFT(·) denotes Fourier transform and IFFT(·) de-
notes inverse Fourier transform, abs(·) represents absolute
value, Gaussian_kernel denotes a high-pass filter with gaus-
sian kernel. After the distance score D is obtained, LaSt-
ViT performs average pooling only on the patches with the
lowest M distance scores, while discarding the others. No-
tably, LaSt-ViT introduces only minimal modifications to
ViT. As a result, our method can be easily integrated into
many ViT variants [1, 20, 25, 26, 32]. The detailed Pytorch-
type pseudo-code is provided in Alg. 1.

5.3. Transfer to Downstream Tasks
In this section, we provide further details and explain how
each downstream task is conducted.
Unsupervised Object Discovery. Since LazyStrike guides
the CLS token to focus on foreground objects, as shown in
Fig. 5, we can achieve unsupervised object localization using
patch scores. This expansion is independent of the training
method—typically a privilege of self-supervised approaches
like DINO in earlier works—for the first time allowing any
training objective to accomplish this. We construct the mask
by applying a threshold defined as the mean score plus one
standard deviation. Patches with scores above this threshold
are classified as foreground.
Zero-shot Open-Vocabulary Tasks. Since LazyStrike en-
sures that the CLS feature aggregates information from the
correct patch features, and the CLS feature itself is directly
supervised by the learning signal, this effectively leads to an

Method High Norm Points-in-Box

ResNet [10] ✗ 68.4
ViT [7] ✓ 42.7
ViT (+LazyStrike) ✗ 55.1 (+12.4)

DINO-ResNet [1] ✗ 71.1
DINO-v1 [1] ✗ 44.5
DINO-v1 (+LazyStrike) ✗ 69.7 (+25.2)

CLIP-ResNet [22] ✗ 53.9
CLIP [22] ✓ 39.8
CLIP (+LazyStrike) ✗ 50.1 (+10.3)

Table 3. Evaluation of the LazyStrike in Points-in-Box score.

Figure 6. Evaluation of the LaSt-ViT in feature norm. Specifically,
the elimination of artifacts also removes the high-norm phenom-
ena [5], highlighting our deeper perspective on addressing artifacts.

indirect alignment between patch features and the supervi-
sion signal. For text-supervised ViTs, we can obtain zero-
shot semantic segmentation results by computing the similar-
ity between patch features and arbitrary text features, thereby
enabling applications across various open-vocabulary tasks.

6. Experiment
6.1. Experiment Settings
We first verify the elimination of artifacts in patch score
(Sec. 6.2) and validate our proposed method on three train-
ing methods: fully supervised (Sec. 6.3), text-supervised
(Sec. 6.4), and self-supervised (Sec. 6.5), and examine multi-
ple downstream tasks for ViT under different supervision, in-
cluding object discovery [1, 24], zero-shot semantic segmen-
tation [22, 25, 32], open-vocabulary object detection [13],
instance segmentation [30] and coarse segmentation [1].
Implementation Details. Without additional specification,
we set M to half the number of image tokens (for example,
with an input of 224, ViT-16 produces 196 tokens, hence
M = 98 in this case) in Alg. 1, which aligns with our finding
that over half of the patches in an image are redundant.

6.2. Artifact Elimination
Elimination of artifacts in feature norm and patch score.
Tab. 3 presents the results under different training meth-
ods, demonstrating that LazyStrike not only eliminates the



Model Backbone COCO-Obj. ADE20K City. VOC20 Context59 COCO-Stf.

CLIP [22] ViT-B/16 8.8 3.1 6.5 49.0 11.2 7.2
CLIP (+LazyStrike) ViT-B/16 13.3 (+4.5) 8.3 (+5.2) 12.1 (+5.6) 75.0 (+26.0) 15.2 (+4.0) 11.8 (+4.6)
MetaCLIP [32] ViT-B/16 4.8 2.9 5.8 39.6 9.3 6.2
MetaCLIP (+LazyStrike) ViT-B/16 14.1 (+9.3) 7.9 (+5.0) 11.1 (+5.3) 72.8 (+33.2) 15.5 (+6.2) 12.0 (+5.8)
EVACLIP [25] ViT-B/16 15.0 6.7 12.2 56.5 14.1 9.7
EVACLIP (+LazyStrike) ViT-B/16 26.2 (+11.2) 14.8 (+8.1) 24.5 (+12.3) 79.6 (+23.1) 24.7 (+10.6) 18.3 (+8.6)

CLIP [22] ViT-L/14 3.0 1.6 2.7 17.1 5.1 3.2
CLIP (+LazyStrike) ViT-L/14 15.0 (+12.0) 8.4 (+6.8) 12.3 (+9.6) 72.4 (+55.3) 15.1 (+10.0) 11.9 (+8.7)
MetaCLIP [32] ViT-L/14 5.0 3.3 6.2 25.7 8.9 6.1
MetaCLIP (+LazyStrike) ViT-L/14 13.9 (+8.9) 9.2 (+5.9) 13.9 (+7.7) 75.6 (+49.9) 16.0 (+7.1) 12.5 (+6.4)
EVACLIP [25] ViT-L/14 15.7 8.4 13.8 53.8 16.6 10.1
EVACLIP (+LazyStrike) ViT-L/14 24.0 (+8.3) 11.3 (+2.9) 17.7 (+3.9) 76.4 (+22.6) 21.7 (+5.1) 14.8 (+4.7)

Table 4. Evaluation results (mIoU, %) on six semantic segmentation benchmarks. Our results are marked in gray . LazyStrike consistently
improves semantic segmentation results under text supervision across different type of CLIP [22] and model sizes, demonstrating that, after
understanding the essence of the problem, a simple approach can uniformly address issues across different models.

Method Backbone
COCO Detection LVIS Segmentation

AP50box AP50box
base AP50box

novel APmask APmask
freq APmask

comm APmask
novel

ConvNet based
F-VLM [13] RN50 39.6 / 28.0 24.2 26.9 24.0 18.6
F-VLM [13] RN50x64 / / / 34.9 / / 32.8
ViT based
F-ViT [30] ViT-B/16 34.9 41.0 17.5 15.4 20.6 12.3 11.5
F-ViT (+LazyStrike) ViT-B/16 45.7 (+10.8) 50.1 (+11.1) 33.3 (+15.8) 21.7 (+6.3) 25.2 (+4.6) 18.0 (+5.7) 22.8 (+11.3)
F-ViT [30] ViT-L/14 46.0 53.6 24.7 28.7 31.5 27.9 24.2
F-ViT (+LazyStrike) ViT-L/14 53.2 (+7.2) 68.2 (+14.6) 39.1 (+14.4) 34.3 (+5.4) 35.1 (+3.6) 34.4 (+6.6) 32.1 (+6.6)

Table 5. Evaluation results on open-vocabulary benchmark. Our results are marked in gray . LazyStrike consistently enhances
performance on open-vocabulary dense tasks, by demonstrating that frozen ViT can achieve comparable performance with ConvNet [10].

Model Train mIoU

ViT-B/16 Supervised 22.3
ViT-B/16 (+LazyStrike) Supervised 32.8 (+10.5)
ViT-S/16 Supervised 29.5
ViT-S/16 (+LazyStrike) Supervised 41.9 (+12.4)

ViT-S/16 DINO 47.7
ViT-S/16 (+LazyStrike) DINO 55.1 (+7.4)

Table 6. Coarse segmentation via patch score. We follow [33]
to conduct coarse segmentation on VOC12. With LazyStrike, ViT
under label-supervision also appears emergence of segmentation.

high-norm phenomenon but also enhances Point-in-Box
score. With LazyStrike applied, ViT’s Point-in-Box score ap-
proaches that of ResNet [10]. Fig. 6 provides a detailed anal-
ysis of feature norms under fully supervised training [26],
revealing that LazyStrike reduces the maximum feature val-
ues, thereby mitigating the high-norm phenomenon.

6.3. Fully-Supervised Comparison
Emergence of Coarse Segmentation. Following [1], we
evaluate emerging properties, a phenomenon only appears

in self-supervised training before, on the validation set of
VOC12. As shown in Tab. 6, our method consistently im-
proves emerging properties across different model sizes and
training methods. Notably, our approach achieves perfor-
mance close to DINO in the supervised setting (41.9% vs.
47.7%), demonstrating that LazyStrike prompts emerging
properties and those are not exclusive to self-supervised.
Emergence of PCA. As shown in Fig. 7, we compute the
PCA of the patch features from LaSt-ViT and visualize the
first three components for the foreground. FocusLock re-
fines the previously entangled PCA features, effectively dis-
tinguishing and highlighting the salient foreground.

6.4. Weakly-Supervised Comparison
Zero-shot Semantic Segmentation benchmarks. Tab. 4
illustrates our proposed method against several baseline mod-
els on six semantic segmentation benchmarks. The improve-
ments achieved by integrating our modifications into these
models are highlighted in blue. Our method consistently
outperforms the baseline models across all evaluated bench-
marks, demonstrating significant gains. For instance, when
applied to the CLIP [22] model with ViT-B/16 architecture,
our method achieves a substantial increase in mIoU on the



Method FPS VOC07 VOC12 COCO

SS [27] - 18.8 20.9 16.0
EdgeBoxes [37] - 31.1 31.6 28.8

DINO-seg [1] 29.4 45.8 46.2 42.1
LOST [24] 29.4 61.9 64.0 50.7
DINO (+LazyStrike) 55.9 64.4 67.6 51.6

Table 7. Object discovery CorLoc. All models adopt ViT-S. Pre-
vious best-performing methods relied on eigenvector computations,
whereas LazyStrike avoids such heavy computational demands.

ViT [7] +LazyStrike ViT [7] +LazyStrike

Figure 7. Visualization of PCA components. We compute the
PCA of the patch features and visualize the first 3 components
for the foreground object. With LazyStrike, ViT under label-
supervision also shows the emergence of PCA, which helps dis-
tinguish foreground from background and separate object parts,
enhancing feature representation.

Pascal (from 11.2% to 15.2%), Cityscapes (from 6.5% to
12.1%), and VOC (from 49.0% to 75.0%). When scaled up
to the larger ViT-L architecture, our method continues to
deliver remarkable results. For the CLIP model, the mIoU
on VOC jumps from 17.1% to an impressive 72.4%, and on
Cityscapes, it increases from 2.7% to 12.3%. In summary,
integrating our method into the baseline models results in sig-
nificant improvements across all benchmarks, demonstrating
its robustness and effectiveness across various CLIP models
and models of different sizes.
Open-vocabulary Object Detection and Segmentation
benchmarks. As shown in Tab. 5, We choose F-VLM [13]
and F-ViT [30] as baselines. Both methods use a frozen
CLIP [25] as the backbone for object detection and instance
segmentation. After obtaining the region of interest, they
weigh the semantic scores of the corresponding area to de-
termine the object class scores. The only difference is that F-
VLM uses a ConvNet-based backbone, while F-ViT employs
a ViT-based backbone. For OV-COCO, LaSt-ViT achieves
a gain of 15.8% and 14.4% over the baseline on the novel
category for ViT-B and ViT-L, respectively. For OV-LVIS, it
also improves the baseline by 11.3% and 6.6% over the rare
category for ViT-B and ViT-L.

6.5. Self-Supervised Comparison

Unsupervised Object Discovery. We adopt DINO-seg [1]
and LOST [24] as baselines for comparison, both utilizing

Dataset → ImageNet-1k COCO
(a). Full-sup. Acc#1 Acc#5 Det. Seg.
DeiT 81.0 95.3 47.6 42.4
+DynamicViT 81.4 95.4 41.2 37.1
+Ours 81.7 95.4 47.4 42.4

Dataset → ImageNet-1k COCO
(b). Self-sup. KNN Linear Det. Seg.
DINO 74.5 77.0 50.3 44.9
+DynamicViT 66.4 68.2 42.7 39.9
+Ours 74.7 76.4 50.6 45.3

Table 8. Lazy behavior in ViTs does not harm classification accu-
racy but limits their use as general feature extractors. Our method,
LazyStrike, addresses this while preserving versatile features for
tasks like detection and segmentation. In contrast, token pruning
improves classification efficiency but sacrifices generality for differ-
ent tasks and adaptability for different pretraining methods, making
it ineffective for general feature extractor.

Method IN1K [6] VOC [8] COCO [8]

Attention-Pool 55.8 10.7 3.3
Max-Pool 53.1 71.9 12.2

w/ LazyStrike
M = 1 53.5 72.7 13.5
M = 49 55.8 75.8 18.5
M = 98 56.2 75.9 18.0
M = 196 (Full) 55.3 13.5 4.8

Table 9. Ablation study on text-supervised ViT [12]. We report
ImageNet classification and downstream semantic segmentation
results, where LazyStrike significantly addresses the artifact issue
and even leads to a improvement in classification.

ViT-S [7] as the backbone for object discovery tasks. The
comparisons are illustrated in Tab. 7. LaSt-ViT exhibits
significant performance improvements. Specifically, our
model achieves the highest CorLoc scores across all datasets,
surpassing both DINO-seg and LOST models. Notably, our
model attains a CorLoc score of 64.4% on VOC 2007, 67.6%
on VOC 2012, and 51.6% on COCO, representing improve-
ments of 2.7%, 3.6%, and 0.9% points, respectively, over
the best-performing LOST model. Moreover, our method
demonstrates a remarkable throughput of 55.9 images per
second. This indicates that our model achieves superior ob-
ject discovery performance and operates more efficiently,
making it highly suitable for practical applications.

6.6. Ablation study

Other method to alleviate artifacts. In Tab. 9, we com-
pare Maxpool, a method that can also drastically reduce
redundancy to mitigate artifacts. While it reduces the arti-
fact phenomenon and improves ViT’s semantic segmentation
performance, it leads to a loss of important feature details,
resulting in diminished performance in classification and



Method IN1K [6] VOC07 [8] VOC12 [8]

Attention-Pool 59.1 14.1 28.7
Mean-Pool 64.3 15.3 29.6

w/ LazyStrike
M = 1 64.6 30.4 35.6
M = 7 64.8 32.1 37.6
M = 49 (Full) 64.9 15.8 30.3

Table 10. Ablations stduy on label-supervised ViT [26]. We report
ImageNet classification performance and downstream object loca-
tion results, where LazyStrike significantly addresses the artifact.

other downstream tasks.
Number of cutted tokens. In Tab. 9, we examine the impact
of the number of dropped tokens by training OpenCLIP [12]
ViT-B/16 with different M . Performance improves signif-
icantly with LazyStrike, peaking when half of the tokens
are selected. Tab. 10 shows further ablation studies on label-
supervised ViT-B/32, with pretraining on ImageNet-1k and
classification performance and CorLoc results.

7. Conclusion

In this work, we first introduce a unified probing metric to
uncover the root cause of artifacts in the Vision Transformer.
We reveal that ViT lazily adopts semantically irrelevant lo-
cal patches as shortcuts to encode global image semantics.
Based on these findings, we propose drop half of the image
patches to prevent ViT’s lazy behavior, achieving strong per-
formance across 12 benchmarks. Our work provides a new
baseline for future research on ViT.

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vision
(ICCV), 2021. 1, 2, 3, 6, 7, 8

[2] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12m: Pushing web-scale image-text pre-
training to recognize long-tail visual concepts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3558–3568, 2021. 3

[3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020. 1

[4] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. 2022. 1

[5] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bo-
janowski. Vision transformers need registers. arXiv preprint
arXiv:2309.16588, 2023. 1, 2, 3, 4, 6

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1, 3, 4, 5, 8, 9

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 3, 4, 5, 6, 8

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88:303–338, 2010. 8, 9

[9] Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. Pay attention
to your neighbours: Training-free open-vocabulary semantic
segmentation. arXiv preprint arXiv:2404.08181, 2024. 3

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1, 2, 4, 6, 7

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In CVPR, 2017. 1

[12] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal
Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, 2021.
If you use this software, please cite it as below. 2, 3, 8, 9

[13] Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and
Anelia Angelova. F-vlm: Open-vocabulary object detection
upon frozen vision and language models. arXiv preprint
arXiv:2209.15639, 2022. 6, 7, 8

[14] Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang,
Litong Feng, and Wayne Zhang. Proxyclip: Proxy atten-
tion improves clip for open-vocabulary segmentation. arXiv
preprint arXiv:2408.04883, 2024. 3

[15] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq
Joty, Caiming Xiong, and Steven Chu Hong Hoi. Align
before fuse: Vision and language representation learning
with momentum distillation. Advances in neural information
processing systems, 34:9694–9705, 2021. 3

[16] Yi Li, Hualiang Wang, Yiqun Duan, and Xiaomeng Li. Clip
surgery for better explainability with enhancement in open-
vocabulary tasks, 2023. 3

[17] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning, 2023. 1

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 5

[19] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision, 2016. 4

[20] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell
Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li,
Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas,
Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal,

https://github.com/pytorch/vision
https://github.com/pytorch/vision


Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Di-
nov2: Learning robust visual features without supervision,
2023. 1, 3, 6

[21] Bill Psomas, Ioannis Kakogeorgiou, Konstantinos Karantza-
los, and Yannis Avrithis. Keep it simpool: Who said super-
vised transformers suffer from attention deficit? In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 5350–5360, 2023. 1

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1, 2, 3, 6, 7

[23] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114, 2021. 3

[24] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spy-
ros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Marlet,
and Jean Ponce. Localizing objects with self-supervised trans-
formers and no labels. arXiv preprint arXiv:2109.14279,
2021. 1, 2, 6, 8

[25] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
Cao. Eva-clip: Improved training techniques for clip at scale.
arXiv preprint arXiv:2303.15389, 2023. 6, 7, 8

[26] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In International conference on machine learning, pages
10347–10357. PMLR, 2021. 2, 3, 6, 7, 9

[27] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for object
recognition. International journal of computer vision, 104(2):
154–171, 2013. 8

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

[29] Feng Wang, Jieru Mei, and Alan Yuille. Sclip: Rethink-
ing self-attention for dense vision-language inference. In
European Conference on Computer Vision, pages 315–332.
Springer, 2025. 2, 3

[30] Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Xiangtai Li,
Wentao Liu, and Chen Change Loy. Clipself: Vision trans-
former distills itself for open-vocabulary dense prediction.
arXiv preprint arXiv:2310.01403, 2023. 1, 3, 6, 7, 8
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