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Abstract

Grounding referring expressions aims to locate in an
image an object referred to by a natural language expres-
sion. The linguistic structure of a referring expression pro-
vides a layout of reasoning over the visual contents, and it
is often crucial to align and jointly understand the image
and the referring expression. In this paper, we propose a
scene graph guided modular network (SGMN), which per-
forms reasoning over a semantic graph and a scene graph
with neural modules under the guidance of the linguistic
structure of the expression. In particular, we model the
image as a structured semantic graph, and parse the ex-
pression into a language scene graph. The language scene
graph not only decodes the linguistic structure of the ex-
pression, but also has a consistent representation with the
image semantic graph. In addition to exploring structured
solutions to grounding referring expressions, we also pro-
pose Ref-Reasoning, a large-scale real-world dataset for
structured referring expression reasoning. We automati-
cally generate referring expressions over the scene graphs
of images using diverse expression templates and functional
programs. This dataset is equipped with real-world visual
contents as well as semantically rich expressions with dif-
ferent reasoning layouts. Experimental results show that
our SGMN not only significantly outperforms existing state-
of-the-art algorithms on the new Ref-Reasoning dataset, but
also surpasses state-of-the-art structured methods on com-
monly used benchmark datasets. It can also provide inter-
pretable visual evidences of reasoning.1

1. Introduction
Grounding referring expressions aims to locate in an im-

age an object referred to by a natural language expression,
1Dataset and code are available at https://github.com/sibeiyang/sgmn.
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Figure 1. Scene Graph guided Modular Network (SGMN) for
grounding referring expressions. SGMN first parses the expres-
sion into a language scene graph and models the image as a se-
mantic graph, then it performs structured reasoning with neural
modules under the guidance of the language scene graph.

and the object is called the referent. It is a challenging prob-
lem because it requires understanding as well as performing
reasoning over semantics-rich referring expressions and di-
verse visual contents including objects, attributes and rela-
tions.

Analyzing the linguistic structure of referring expres-
sions is the key to grounding referring expressions because
they naturally provide the layout of reasoning over the vi-
sual contents. For the example shown in Figure 1, the
composition of the referring expression “the girl in blue
smock across the table” (i.e., triplets (“the girl”, “in”, “blue
smock”) and (“the girl”, “across” , “the table”)) reveals
a tree-structured layout of finding the blue smock, locat-
ing the table and identifying the girl who is “in” the blue
smock and meanwhile is “across” the table. However,
nearly all the existing works either neglect linguistic struc-
tures and learn holistic matching scores between monolithic
representations of referring expressions and visual contents
[18, 29, 23] or neglect syntactic information and explore
limited linguistic structures via self-attention mechanisms
[26, 8, 24].

Consequently, in this paper, we propose a Scene Graph
guided modular network (SGMN) to fully analyze the lin-
guistic structure of referring expressions and enable reason-
ing over visual contents using neural modules under the
guidance of the parsed linguistic structure. Specifically,
SGMN first models the input image with a structured rep-
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resentation, which is a directed graph over the visual ob-
jects in the image. The edges of the graph encode the se-
mantic relations among the objects. Second, SGMN ana-
lyzes the linguistic structure of the expression by parsing
it into a language scene graph [21, 16] using an external
parser, including the nodes and edges of which correspond
to noun phrases and prepositional/verb phrases respectively.
The language scene graph not only encodes the linguistic
structure but is also consistent with the semantic graph rep-
resentation of the image. Third, SGMN performs reason-
ing on the image semantic graph under the guidance of the
language scene graph by using well-deigned neural mod-
ules [2, 22] including AttendNode, AttendRelation, Trans-
fer, Merge and Norm. The reasoning process can be explic-
itly explained via a graph attention mechanism.

In addition to methods, datasets are also important for
making progress on grounding referring expressions, and
various real-world datasets have been released [12, 19, 27].
However, recent work [4] indicates dataset biases exist and
they may be exploited by the methods. And methods ac-
cessing the images only achieve marginally higher perfor-
mance than a random guess. Existing datasets also have
other limitations. First, the samples in the datasets have
unbalanced levels of difficulty. Many expressions in the
datasets directly describe the referents with attributes due
to the annotation process. Such an imbalance makes models
learn shallow correlations instead of achieving joint image
and text understanding, which defeats the original intention
of grounding referring expressions. Second, evaluation is
only conducted on final predictions but not on the interme-
diate reasoning process [17], which does not encourage the
development of interpretable models [24, 15]. Thus, a syn-
thetic dataset over simple 3D shapes with attributes is pro-
posed in [17] to address these limitations. However, the vi-
sual contents in this synthetic dataset are too simple, which
is not conducive to generalizing trained models on the syn-
thetic dataset to real-world scenes.

To address the aforementioned limitations, we build
a large-scale real-world dataset, named Ref-Reasoning.
We generate semantically rich expressions over the scene
graphs of images [14, 10] using diverse expression tem-
plates and functional programs, and automatically obtain
the ground-truth annotations at all intermediate steps dur-
ing the modularized generation process. Furthermore, we
carefully balance the dataset by adopting uniform sampling
and controlling the distribution of expression-referent pairs
over the number of reasoning steps.

In summary, this paper has the following contributions:

• A scene graph guided modular neural network is pro-
posed to perform reasoning over a semantic graph and a
scene graph using neural modules under the guidance of the
linguistic structure of referring expressions, which meets
the fundamental requirement of grounding referring expres-

sions.

• A large-scale real-word dataset, Ref-Reasoning, is
constructed for grounding referring expressions. Ref-
Reasoning includes semantically rich expressions describ-
ing objects, attributes, direct and indirect relations with a
variety of reasoning layouts.

• Experimental results demonstrate that the proposed
method not only significantly surpasses existing state-of-
the-art algorithms on the new Ref-Reasoning dataset, but
also outperforms state-of-the-art structured methods on
common benchmark datasets. In addition, it can provide
interpretable visual evidences of reasoning.

2. Related Work
2.1. Grounding Referring Expressions

A referring expression normally not only directly de-
scribes the appearance of the referent, but also its relations
to other objects in the image, and its reference information
depends on the meanings of its constituent expressions and
the rules used to compose them [9, 24]. However, most
of the existing works [29, 23, 25] neglect linguistic struc-
tures and learn holistic representations for the objects in
the image and the expression. Recently, there are some
works which involve the expression analysis into their mod-
els, and learn the components of expression and visual in-
ference from end to end. The methods in [9, 26, 28] softly
decompose the expression into different semantic compo-
nents relevant to different visual evidences, and compute a
matching score for every component. They use fixed se-
mantic components, e.g. subject-relation-object triplets [9]
and subject-location-relation components [26], which are
not feasible for complex expressions. DGA [24] analyzes
linguistic structures for complex expressions by iteratively
attending their constituent expressions. However, they all
resort to self-attention on the expression to explore its lin-
guistic structure but neglect its syntactic information. An-
other work [3] grounds the referent using a parse tree, where
each node of the tree is a word (or phrase) which can be a
noun, preposition or verb.

2.2. Dataset Bias and Solutions

Recently, the dataset bias began to be discussed for
grounding referring expressions [4, 17]. The work in [4]
reveals even the linguistically-motivated models tend to
learn shallow correlations instead of making use of lin-
guistic structures because of the dataset bias. In addition,
expression-independent models can achieve high perfor-
mance. The dataset bias can have a significantly negative
impact on the evaluation of a model’s readiness for joint
understanding and reasoning for language and vision.



Figure 2. An overview of our Scene Graph guided Modular Network (SGMN)(better viewed in color). Different colors represent different
nodes in the language scene graph and their corresponding nodes in the image semantic graph. SGMN parses the expression into a language
scene graph and constructs an image semantic graph over the objects in the input image. Next, it performs reasoning under the guidance of
the language scene graph. It first locates the nodes in the image semantic graph for the leaf nodes in the language scene graph using neural
modules AttendNode and Norm. Then for the intermediate nodes in the language scene graph, it uses AttendRelation, Transfer and Norm
modules to attend the nodes in the image semantic graph, and the Merge module to combine the attention results.

In order to address the above problem, the work in [17]
proposes a new diagnostic dataset, called CLEVR-Ref+.
Same as CLEVR [11] in visual question answering, it con-
tains rendered images and automatically generated expres-
sions. In particular, the objects in the images are simple 3D
shapes with attributes (i.e., color, size and material), and the
expressions are generated using designed templates which
include spatial and same-attribute relations. However, the
models trained on this synthetic dataset cannot be easily
generalized to real-world scenes because the visual contents
(i.e., simple 3D shapes with attributes and spatial relations)
are too simple to jointly reason about language and vision.

Thanks for the scene graph annotations of real-world im-
ages provided in the Visual Genome datasets [14] and fur-
ther cleaned in the GQA dataset [10], we generate seman-
tically rich expressions over the scene graphs with objects,
attributes and relations using carefully designed templates
along with functional programs.

3. Approach
We now present the proposed scene graph guided mod-

ular network (SGMN). As illustrated in Figure 2, given an
input expression and an input image with visual objects, our
SGMN first builds a pair of semantic graph and scene graph
representations for the image and expression respectively,
and then performs structured reasoning over the graphs us-
ing neural modules.

3.1. Scene Graph Representations

Scene graph based representations form the basis of our
structured reasoning. In particular, the image semantic
graph flexibly captures and represents all the visual contents
needed for grounding referring expressions in the input im-
age while the language scene graph explores the linguistic

structure of the input expression, which defines the layout of
the reasoning process. In addition, these two types of graphs
have consistent structures, where the nodes and edges of the
language scene graph respectively correspond to a subset of
the nodes and edges of the image semantic graph.

3.1.1 Image Semantic Graph

Given an image with objects O = {oi}Ni=1 , we define
the image semantic graph over the objects O as a directed
graph, Go = (Vo, Eo), where Vo = {voi }Ni=1 is the set
of nodes and node voi corresponds to object oi; Eo =
{eoij}Ni,j=1 is the set of directed edges, and eoij is the edge
from voj to voi , which denotes the relation between objects
oj and oi.

For each node voi , we obtain two types of features, visual
feature voi extracted from a pretrained CNN model and spa-
tial feature poi = [xi, yi, wi, hi, wihi], where (xi, yi), wi
and hi are the normalized top-left coordinates, width and
height of the bounding box of node vi respectively. For each
edge eoij , we compute the edge feature eoij by encoding the
relative spatial feature loij between voi and voj and the visual
feature voj of node voj together because relative spatial infor-
mation between objects along with their appearance infor-
mation is the key indicator of their semantic relation [5].
Specifically, the relative spatial feature is represented
as loij = [

xj−xci

wi
,
yj−yci
hi

,
xj+wj−xci

wi
,
yj+hj−yci

hi
,
wjhj

wihi
],

where (xci, yci) are the normalized center coordinates of
the bounding box of node voi . And eoij is the concatenation
of an encoded version of loij and voj , i.e., eoij = [WT

o l
o
ij ,v

o
j ],

where Wo is a learnable matrix.

3.1.2 Language Scene Graph

Given an expression S, we first use an off-the-shelf scene
graph parser [21] to parse the expression into an initial lan-



guage scene graph, where a node and an edge of the graph
correspond to an object and the relation between two objects
mentioned in S respectively, and the object is represented as
an entity with a set of attributes.

We define the language scene graph over S as a directed
graph G = (V, E), where V = {vm}Mm=1 is a set of nodes
and node vm is associated with a noun or noun phrase,
which is a sequence of words from S; E = {ek}Kk=1 is a
set of edges and edge ek = (vks, rk, vko) is a triplet of sub-
ject node vks ∈ V , object node vko ∈ V and relation rk, the
direction of which is from vko to vks. Relation rk is associ-
ated with a preposition/verb word or phrase from S, and ek
indicates that subject node vks is modified by object node
vko.

3.2. Structured Reasoning

We perform structured reasoning on the nodes and edges
of graphs using neural modules under the guidance of the
structure of language scene graph G. In particular, we first
design the inference order and reasoning rules for its nodes
V and edges E . Then, we follow the inference order to per-
form reasoning. For each node, we adopt the AttendNode
module to find its corresponding node in graph Go or use
the Merge module to combine information from its inci-
dent edges. For each edge, we execute specific reasoning
steps using carefully designed neural modules, including
AttendNode, AttendRelation and Transfer.

3.2.1 Reasoning Process

In this section, we first introduce the inference order, and
then present specific reasoning steps on the nodes and edges
respectively. In general, for every node in language scene
graph G, we learn its attention map over the nodes of image
semantic graph Go on the basis of its connections.

Given a language scene graph G, we locate the node with
zero out-degree as its referent node vref because the refer-
ent is usually modified by other entities rather than modify-
ing other entities in a referring expression. Then, we per-
form breadth-first traversal of the nodes in graph G from the
referent node vref by reversing the direction of all edges,
meanwhile, push the visited nodes into a stack which is ini-
tially empty. Next, we iteratively pop one node from the
stack and perform reasoning on the popped node. The stack
determines the inference order for the nodes, and one node
can reach the top of the stack only after all of its modifying
nodes have been processed. This inference order essentially
converts graph G into a directed acyclic graph. Without loss
of generality, suppose node vm is popped from the stack in
the present iteration, and we carry out reasoning on node
vm on the basis of its connections to other nodes. There are
two different situations: 1) If the in-degree of vm is zero,
vm is a leaf node, which means node vm is not modified
by any other nodes. Thus, node vm should be associated

with the nodes of image semantic graph Go independently;
2) otherwise, if node vm has incident edges Em ∈ E start-
ing from other nodes, vm is an intermediate node, and its
attention map over Vo should depend on the attention maps
of its connected nodes and the edges between them.

Leaf node. We learn an embedding for the words associated
with the nodes of the language scene graph G in advance.
Then, for node vm, suppose its associated phrase consists of
words {wt}Tt=1, and the embedded feature vectors for these
words are {ft}Tt=1. We use a bi-directional LSTM [7] to
compute the context of every word in this phrase, and define
the concatenation of the forward and backward hidden vec-
tors of a word wt as its context, denoted as ht. Meanwhile,
we represent the whole phrase using the concatenation of
the last hidden vectors of both directions, denoted as h. In a
referring expression, an individual entity is often described
by its appearance and spatial location. Therefore, we learn
feature representations for node vm from both appearance
and spatial location. In particular, inspired by self-attention
in [9, 23, 26], we first learn the attention over each word
on the basis of its context, and obtain feature representa-
tions vlookm and vlocm at node vm by aggregating attention
weighted word embedding as follows,

αlookt,m =
exp(WT

lookht)∑T
t=1 exp(WT

lookht)
,vlookm =

T∑
t=1

αlookt,m ft

αloct,m =
exp(WT

locht)∑T
t=1 exp(WT

locht)
,vlocm =

T∑
t=1

αloct,mft,

(1)

where Wlook and Wloc are learnable parameters, and vlookm

and vlocm correspond to the appearance and spatial loca-
tion of node vm. Then, we feed these two features into
the AttendNode neural module to compute attention maps
{λlookn,m}Nn=1 and {λlocn,m}Nn=1 over the nodes of image se-
mantic graph Go. Finally, we combine these two attention
maps to obtain the final attention map for node vm. A noun
phrase may place emphasis on appearance, spatial location
or both of them. We flexibly adapt to the variations of noun
phrases by learning a pair of weights at node vm for the
attention maps related to appearance and spatial location.
The weights (i.e. βlook and βloc) and the final attention map
{λn,m}Nn=1 for node vm are computed as follows,

βlook = sigmoid(WT
0 h + b0)

βloc = sigmoid(WT
1 h + b1)

λn,m = βlookλlookn,m + βlocλlocn,m

{λn,m}Nn=1 = Norm({λn,m}Nn=1),

(2)

where WT
0 , b0, WT

1 and b1 are learnable parameters, and
the Norm module is used to constrain the scale of the atten-
tion map.



Intermediate node. As an intermediate node, vm is con-
nected to other nodes that modify it, and such connections
are actually a subset of edges, Em ∈ E , incident to vm. We
compute an attention map over the edges of image seman-
tic graph Go for each edge in this subset, then transfer and
combine all these attention maps to obtain a final attention
map for node vm.

For each edge ek = (vks, rk, vko) in Em (where vks is
exactly vm), we first form a sentence associated with ek
by concatenating the words or phrases associated with vks,
rk and vko. Then, we obtain the embedded feature vectors
{ft}Tt=1 and word contexts {ht}Tt=1 for the words {wt}Tt=1

in this sentence and the feature representation of the whole
sentence by following the same computation for leaf nodes.
Next, we compute the attention map for node vks from two
different aspects, i.e. subject description and relation-based
transfer, because ek not only directly describes subject vks
itself but also its relation to object vko. From the aspect
of subject description, same as the computation for leaf
nodes, we obtain attention maps corresponding to the ap-
pearance and spatial location of vks ( i.e. {λlookn,ks

}Nn=1 and
{λlocn,ks}

N
n=1) and weights (i.e. βlookks

and βlocks ) to combine
them. From the aspect of relation-based transfer, we first
compute a relational feature representation for edge ek as
follows,

αrelt,k =
exp(WT

relht)∑T
t=1 exp(WT

relht)
, rk =

T∑
t=1

αrelt,k ft (3)

where Wrel is a learnable parameter. Then we feed the
relational representation rk to the AttendRelation neu-
ral module to attend the relation rk over the edges Eoij
of graph Go, and the computed attention weights are de-
noted as {γij,k}Ni,j=1. Moreover, we use the Transfer
module and the Norm module to transfer the attention
map {λn,ko}Nn=1 for object node vko to node vm by mod-
ulating {λn,ko}Nn=1 with the attention weights on edges
{γij,k}Ni,j=1, and the transferred attention map for node vm
is denoted as {λreln,ks}

N
n=1. It is worth mentioning that object

node vko has been accessed before and the attention map
{λn,ko}Nn=1 for node vko has been computed. Next, we es-
timate the weight of relation at edge ek and integrate the at-
tention maps for node vks related to subject description and
relation-based transfer to obtain attention map {λn,ks}Nn=1

for node vks contributed by edge ek, and {λn,ks}Nn=1 is de-
fined as follows.

βrelk = sigmoid(WT
2 h + b2)

λn,ks = βlookks λlookn,ks + βlocks λ
loc
n,ks + βreln,ksλ

rel
n,ks

{λn,ks}Nn=1 = Norm({λn,ks}Nn=1),

(4)

where W2 and b2 are learnable parameters.
Finally, we combine the attention maps {{λn,ks}Nn=1}

for node vm contributed by all edges in Em using the Merge

module followed by the Norm module to obtain the final
attention map {λn,m}Nn=1 for node vm.

3.2.2 Neural Modules

We present a series of neural modules to perform specific
reasoning steps, inspired by the neural modules in [22]. In
particular, the AttendNode and AttendRelation modules are
used to connect the language mode with the vision mode.
They receive feature representations of linguistic contents
from the language scene graph and output attention maps
of the features defined over visual contents in the image se-
mantic graph. The Merge, Norm and Transfer modules are
adopted to further integrate and transfer attention maps over
the nodes and edges of the image semantic graph.

AttendNode [appearance query, location query] mod-
ule aims to find relevant nodes among the nodes of the
image semantic graph Go given an appearance query and
location query. It takes the query vectors of the appear-
ance query and location query as inputs and generate at-
tention maps {λlookn }Nn=1 and {λlocn }Nn=1 over the nodes Vo,
where every node von ∈ Vo has two attention weights, i.e.,
λlookn ∈ [−1, 1] and λlocn ∈ [−1, 1]. The query vectors are
linguistic features at nodes of the language scene graph, de-
noted as vlook and vloc. For node von in graph Go, its atten-
tion weights λlookn and λlocn are defined as follows,

λlookn = 〈L2Norm(MLP0(von)),L2Norm(MLP1(vlook))〉,
λlocn = 〈L2Norm(MLP2(pon)),L2Norm(MLP3(vloc))〉,

(5)
where MLP0(), MLP1(), MLP2() and MLP3() are multi-
layer perceptrons consisting of several linear and ReLU lay-
ers, L2Norm() is the L2 normalization, and von and pon are
the visual feature and spatial feature at node von respectively,
which are mentioned in Section 3.1.1.

AttendRelation [relation query] module aims to find rele-
vant edges in the image semantic graph Go given a relation
query. The purpose of a relation query is to establish con-
nections between nodes in graph Go. Given query vector
e, the attention weights {γij}Ni,j=1 on edges {eoij}Ni,j=1 are
defined as follows,

γij = σ(〈L2Norm(MLP5(eoij)),L2Norm(MLP1(e))〉)
(6)

where MLP5(), MLP5() are multilayer perceptrons, and the
ReLU activation function σ ensures the attention weights
are larger than zero.

Transfer module aims to find new nodes by passing at-
tention weights {λn}Nn=1 on nodes that modify those new
nodes along attended edges {γij}Ni,j=1. The updated atten-
tion weights {λnewn }Nn=1 are calculated as follows,

λnewn =

N∑
j=1

γn,jλj . (7)



Merge module aims to combine multiple attention maps
generated from different edges of the same node, where
the attention weights over edges are computed individually.
Given the set of attention maps Λ for a node, the merged
attention map {λn}Nn=1 is defined as follows,

λn =
∑

{λ′
n}Nn=1∈Λ

λ′n. (8)

Norm module aims to set the range of weights in attention
maps to [−1, 1]. If the maximum absolute value of an at-
tention map is larger than 1, the attention map is divided by
the maximum absolute value.

3.3. Loss Function

Once all the nodes in the stack have been processed, the
final attention map for the referent node of the language
scene graph is obtained. This attention map is denoted as
{λn,ref}Nn=1. As in previous methods for grounding refer-
ring expressions [9], during the training phase, we adopt the
cross-entropy loss, which is defined as

pi = exp(λi,ref )/

N∑
n=1

exp(λn,ref ), loss = −log(pgt) (9)

where pgt is the probability of the ground-truth object. Dur-
ing the inference phase, we predict the referent by choosing
the object with the highest probability.

4. Ref-Reasoning Dataset

The proposed dataset is built on the scenes from the
GQA dataset [10]. We automatically generate referring ex-
pressions for every image on the basis of the image scene
graph using a diverse set of expression templates.

4.1. Preparation

Scene Graph. We generate referring expressions according
to the ground-truth image scene graphs. Specifically, we
adopt the scene graph annotations provided by the Visual
Genome dataset [14] and further normalized by the GQA
dataset. In a scene graph annotation of an image, each node
represents an object with about 1-3 attributes, and each edge
represents a relation (i.e., semantic relation, spatial relation
and comparatives) between two objects. In order to use
the scene graphs for referring expression generation, we re-
move some unnatural edges and classes, e.g., “nose left of
eyes”. In addition, we add edges between objects to rep-
resent same-attribute relations between objects, i.e., “same
material”, “same color” and “same shape”. In total, there
are 1,664 object classes, 308 relation classes and 610 at-
tribute classes in the adopted scene graphs.

Expression Template. In order to generate referring ex-
pressions with diverse reasoning layouts, for each specified
number of nodes, we design a family of referring expression
templates for each reasoning layout. We generate expres-
sions according to layouts and templates using functional
programs, and the functional program for each template can
be easily obtained according to the layout. In particular, lay-
outs are sub-graphs of directed acyclic graphs, where only
one node (i.e., the root node) has zero out-degree and other
nodes can reach the root node. The functional program
for a layout provides a step-wise plan for reaching the root
node from leaf nodes (i.e., the nodes with zero in-degree)
by traversing all the nodes and edges in this layout, and
templates are parameterized natural language expressions,
where the parameters can be filled in. Moreover, we set
the constraint that the number of nodes in a template ranges
from one to five.

4.2. Generation Process

Given an image, we generate dozens of expressions from
the scene graph of the image, and the generation process for
one expression is summarized as follows,

• Randomly sample the referent node and randomly de-
cide the number of nodes, denoted as C.
• Randomly sample a sub-graph with C nodes including

the referent node in the scene graph.
• Judge the layout of the sub-graph and randomly sam-

ple a referring expression template from the family of
templates corresponding to the layout.
• Fill in the parameters in the template using contents

of the sub-graph, including relations and objects with
randomly sampled attributes.
• Execute the functional program with filled parame-

ters and accept the expression if the referred object is
unique in the scene graph.

Note that we perform extra operations during the genera-
tion process: 1) If there are objects that have same-attribute
relations in the sub-graph, we avoid choosing the attributes
that appear in such relations for these objects. This re-
striction intends to make the modified node identified by
the relation edge instead of the attribute directly. 2) To
help balance the dataset, during the process of random sam-
pling, we decrease the chances of nodes and relations whose
classes most commonly exist in the scene graphs. In addi-
tion, we increase the chances of multi-order relationships
with C = 3 or C = 4 to reasonably increase the level of
difficulty for reasoning. 3) We define a difficulty level for
a referring expression. We find its shortest sub-expression
which can identify the referent in the scene graph, and the
number of objects in the sub-expression is defined as the
difficulty level. For example, if there is only one bottle in
an image, the difficulty level of “the bottle on a table beside



Number of Objects Split
one two three >= four val test

CNN 10.57 13.11 14.21 11.32 12.36 12.15
CNN+LSTM 75.29 51.85 46.26 32.45 42.38 42.43
DGA 73.14 54.63 48.48 37.63 45.37 45.87
CMRIN 79.20 56.87 50.07 35.29 45.43 45.87
Ours SGMN 79.71 61.77 55.57 41.89 51.04 51.39
CMRIN* 79.83 58.02 51.51 37.65 47.40 47.69
DGA*‡ 78.57 59.85 53.37 40.03 48.95 49.51
Ours SGMN* 80.17 62.24 56.24 42.45 51.59 51.95

Table 1. Comparison with baselines and state-of-the-art methods on Ref-Reasoning dataset. We use * to indicate that this model uses
bottom-up features and use ‡ to indicate that the implementation of this model is slightly different from it in origin paper. The best
performing method is marked in bold.

a plate” is still one even though it describes three objects
and their relations. Then, we obtain the balanced dataset
and its final splits by randomly sampling expressions of im-
ages according to their difficulty level and the number of
nodes described by them.

5. Experiments
5.1. Datasets

We have conducted extensive experiments on the pro-
posed Ref-Reasoning dataset as well as on three com-
monly used benchmark datasets (i.e., RefCOCO[27],
RefCOCO+[27] and RefCOCOg[19]). Ref-Reasoning con-
tains 791,956 referring expressions in 83,989 images. It
has 721,164, 36,183 and 34,609 expression-referent pairs
for training, validation and testing, respectively. Ref-
Reasoning includes semantically rich expressions describ-
ing objects, attributes, direct relations and indirect rela-
tions with different layouts. RefCOCO and RefCOCO+
datasets includes short expressions collected from an in-
teractive game interface. RefCOCOg collects from a non-
interactive settings and it has longer complex expressions.

5.2. Implementation and Evaluation

The performance of grounding referring expressions is
evaluated by accuracy, i.e., the fraction of correct predic-
tions of referents.

For the Ref-Reasoning dataset, we use a ResNet-101
based Faster R-CNN [20, 6] as the backbone, and adopt
a feature extractor which is trained on the training set of
GQA with an extra attribute loss following [1]. Visual fea-
tures of annotated objects are extracted from the pool5 layer
of the feature extractor. For the three common benchmark
datasets (i.e., RefCOCO, RefCOCO+ and RefCOCOg), we
follow CMRIN [23] to extract the visual features of objects
in images. To keep the image semantic graph sparse and
reduce computational cost, we connect each node in the im-
age semantic graph to its five nearest nodes based on the
distances between their normalized center coordinates. We
set the mini-batch size to 64. All the models are trained by

the Adam optimizer [13] with the learning rate set to 0.0001
and 0.0005 for the Ref-Reasoning dataset and other bench-
mark datasets respectively.

5.3. Comparison with the State of the Art

We conduct experimental comparisons between the pro-
posed SGMN and existing state-of-the-art methods on both
the collected Ref-Reasoning dataset and three commonly
used benchmark datasets.
Ref-Reasoning Dataset. We evaluate two baselines (i.e.,
a CNN model and a CNN+LSTM model), two state-of-
the-art methods (i.e., CMRIN [23] and DGA [24]) and the
proposed SGMN on the Ref-Reasoning dataset. The CNN
model is allowed to access objects and images only. The
CNN+LSTM model embeds objects and expressions into a
common feature space and learns matching scores between
them. For CMRIN and DGA, we adopt their default set-
tings [23, 24] in our evaluation. For a fair comparison, all
the models use the same visual object features and the same
setting in LSTMs.

Table 1 shows the evaluation results on the Ref-
Reasoning dataset. The proposed SGMN significantly out-
performs the baselines and existing state-of-the-art models,
and it consistently achieves the best performance on all the
splits of the testing set, where different splits need differ-
ent numbers of reasoning steps. The CNN model has a low
accuracy of 12.15%, which is much lower than the accu-
racy (i.e., 41.1% [4]) of the image-only model for the Ref-
COCOg dataset, which demonstrates that joint understand-
ing of images and text is required on Ref-Reasoning. The
CNN+LSTM model achieves a high accuracy of 75.29% on
the split where expressions directly describe the referents.
This is because relation reasoning is not required in this
split and LSTM may be qualified to capture the semantics of
expressions. Compared with the CNN+LSTM model, DGA
and CMRIN achieve higher performance on the two-, three-
and four-node splits because they learn a language-guided
contextual representation for objects.
Common Benchmark Datasets. Quantitative evaluation
results on RefCOCO, RefCOCO+ and RefCOCOg datasets



RefCOCO RefCOCO+ RefCOCOg
testA testB testA testB test

Holistic Models
CMN [9] 75.94 79.57 59.29 59.34 -
ParallelAttn [29] 80.81 81.32 66.31 61.46 -
MAttNet* [26] 85.26 84.57 75.13 66.17 78.12
CMRIN* [23] 87.63 84.73 80.93 68.99 80.66
DGA* [24] 86.64 84.79 78.31 68.15 80.26
Structured Models
MattNet* + parser [26] 79.71 81.22 68.30 62.94 73.72
RvG-Tree* [8] 82.52 82.90 70.21 65.49 75.20
DGA* + parser [24] 84.69 83.69 74.83 65.43 76.33
NMTree* [15] 85.63 85.08 75.74 67.62 78.21
MSGL* [16] 85.45 85.12 75.31 67.50 78.46
Ours SGMN* 86.67 85.36 78.66 69.77 81.42

Table 2. Comparison with state-of-the-art methods on RefCOCO,
RefCOCO+ and RefCOCOg. We use * to indicate that this model
uses resnet101 features. None-superscript indicates that model
uses vgg16 features. The best performing method is marked in
bold.

are shown in Table 2. The proposed SGMN consis-
tently outperforms existing structured methods across all
the datasets, and it improves the average accuracy over
the testing sets achieved by the best performing existing
structured method by 0.92%, 2.54% and 2.96% respectively
on the RefCOCO, RefCOCO+ and RefCOCOg datasets.
Moreover, it also surpasses all the existing models on the
RefCOCOg dataset which has relatively longer complex
expressions with an average length 8.43, and achieves a
performance comparable to the best performing holistic
method on the other two common benchmark datasets. Note
that holistic models usually have higher performance than
structured models on the common benchmark datasets be-
cause those datasets include many simple expressions de-
scribing the referents without relations, and holistic mod-
els are prone to learn shallow correlations without reason-
ing and may exploit this dataset bias [4, 17]. In addition,
the inference mechanism of holistic methods has poor in-
terpretability.

5.4. Qualitative Evaluation

(a) a woman with pink and black 
hair walking a dog

a woman

walking

pink and black haira dog

with

(b) there is a blanket which is on the chair 
to the left of lamp on a floor

a floor lamp

a chairthere is a blanket

on

to the left of

on

Figure 3. Qualitative results showing the attention maps over the
objects along the language scene graphs predicted by the SGMN.

Visualizations of two examples along with their lan-

guage scene graphs and attention maps over the objects
in images at every node of the language scene graphs
are shown in Figure 3. This qualitative evaluation results
demonstrate that the proposed SGMN can generate inter-
pretable visual evidences of intermediate steps in the rea-
soning process. In Figure 3(a), SGMN parses the expres-
sion into a tree structure and finds the referred “woman”
who is walking “a dog” and meanwhile is with “pink and
black hair”. Figure 3(b) shows a more complex expression
which describes four objects and their relations. SGMN
first successfully changes from the initial attention map
(bottom-right) to the final attention map (top-right) at the
node “a chair” by performing relational reasoning along the
edges (i.e., triplets (“a chair”, “to the left of” , “lamp”)
and (“lamp”, “on”, “a floor”)), and then identifies the tar-
get “blanket” on that chair.

5.5. Ablation Study

Number of Objects Split
one two three >= four val test

w/o transfer 79.14 48.51 45.97 31.57 40.66 41.88
w/o norm 79.37 49.44 45.61 31.57 40.80 41.93
max merge 78.71 54.00 50.34 34.76 44.50 45.27
min merge 78.83 53.83 51.11 35.79 45.25 46.00
Ours SGMN 79.71 61.77 55.57 41.89 51.04 51.39

Table 3. Ablation study on Ref-Reasoning dataset. The best per-
forming method is marked in bold.

To demonstrate the effectiveness of reasoning under the
guidance of scene graphs inferred from referring expres-
sions as well as the design of neural modules, we train four
additional models for comparison. The results are shown in
Table 3. All the models have similar performance on the
split of expressions directly describing the referents. For
the other splits, SGMN without the Transfer module and
SGMN without the Norm module have much lower perfor-
mance than the original SGMN because the former treats
the referent as an isolated node without performing rela-
tion reasoning while the latter unfairly treats different re-
lational edges and the nodes connected by them. Next,
we explore different options of the function (i.e., max, min
and sum) used in the Merge module. Compared to SGMN
with sum-merge, its performance with min-merge and max-
merge drops because max-merge only captures the most sig-
nificant relation for each intermediate node and min-merge
is sensitive to parsing errors and recognition errors.

6. Conclusion

In this paper, we present a scene graph guided modular
network (SGMN) for grounding referring expressions. It
performs graph-structured reasoning over the constructed
graph representations of the input image and expression
using neural modules. In addition, we propose a large-



scale real-world dataset for structured referring expres-
sion reasoning, named Ref-Reasoning. Experimental re-
sults demonstrate that SGMN not only significantly out-
performs existing state-of-the-art algorithms on the new
Ref-Reasoning dataset, but also surpasses state-of-the-art
structured methods on commonly used benchmark datasets.
Moreover, it can generate interpretable visual evidences of
reasoning via a graph attention mechanism.
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